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Resonance width oscillation in the biripple ballistic electron waveguide
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Interference of quasibound states is studied in a ballistic electron-ripple waveguide with two ripple cavities
whose distance apart can be varied. This system is the waveguide analog of Dicke’s model for two interacting
atoms in a radiation field. Dicke’s model has resonances whose widths change in an oscillatory manner as the
distance between the atoms is varied. Resonances that form in a biripple waveguide behave in a manner that
has some similarity to Dicke’s system, but also important differences. We numerically investigate the behavior
of resonance widths in the waveguide as the distance between the two ripple cavities changes and we find that
the resonance widths oscillate with variation in distance, but the coupling does not decrease as it does in
Dicke’s system. We discuss differences between our waveguide system and other systems showing the analo-
gous of Dicke effect. We also study scattering-matrix pole trajectories and find that they rotate in counter-

clockwise direction on a circle in the complex energy plane.
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In 1954, Dicke' showed that a collection of N noninter-
acting atoms coupled to a common radiation field would
spontaneously and coherently radiate with a radiation rate
that is N? times that of a single atom. This type of coherent
radiation is called super-radiance and occurs because the N
atoms coherently radiate their energy N times as fast a single
atom. Twenty years after Dicke’s work was published, this
so-called Dicke effect was observed experimentally in opti-
cally pumped hydrogen fluoride gas” and a few years later in
atomic europium.’

An analogous effect has been observed in solid-state sys-
tems. Shahbazyan and Raikh,* in a theoretical paper, pro-
posed the existence of a Dicke effect in the conductance of a
tunneling junction with two resonant impurities. In this sys-
tem, the bound states of each impurity are indirectly coupled
to each other through the electron-wave function in the ex-
ternal leads. The analogy to the Dicke effect has also been
proposed for several other mesoscopic systems including
quantum dots coupled via a common phonon field,® and a
quantum wire with side-coupled quantum dots.” Scheibner et
al.® observed the Dicke effect experimentally in the coherent
spontaneous radiation from a two-dimensional (2D) array of
exciton quantum dots in CdSe/ZnSe using photolumines-
cence spectroscopy.

In a previous study,” we showed that the analog of the
Dicke effect also appears in the electron conductance of a
multiripple ballistic-electron waveguide in a GaAs/AlGaAs
heterostructure. Conduction resonances occur in the wave-
guide due to electron quasibound states created by the mul-
tiple ripple cavities in the waveguide. We found broadening
and narrowing of resonance widths in electron transmission
(conductance) as more ripples are added to the waveguide
cavity. However, we could not determine how the resonance
widths change as the distance between ripple cavities varies,
which is one of the key features of the Dicke effect. In this
Brief Report, we study the dependence of resonance widths
on the distance between the two cavities of a biripple wave-
guide using the reaction matrix (R-matrix) theory to generate
the scattering matrix (S-matrix) for the waveguide and,
thereby, the transmission probability. The R-matrix theory

1098-0121/2009/79(19)/193305(4)

193305-1

PACS number(s): 72.10.—d, 42.50.Gy, 73.63.Kyv, 73.23.Ad

was originally introduced by Wigner and Eisenbud in 1949
(Ref. 10) for the study of nuclear scattering. Recently, the
R-matrix theory has been used to study electron transmission
in ballistic electron-ripple waveguides.”!''* This method
generates an exact solution of the Schrodinger equation for
electrons propagating in the multiripple waveguide.

Let us consider a waveguide system in which two
monoripple cavities are connected to each other by a straight
waveguide lead whose length is W. The length of each
monoripple cavity is W, and the upper wall of each cavity is
described by an analytic function y=d—a cos(2mx/W,) (see
Fig. 1). The outer end of each cavity is connected to a semi-
infinite straight lead whose height is L=(d—a). We assume
that the waveguide is built in a two-dimensional electron gas
(2DEG) made of a GaAs/AlGaAs heterostructure at a very
low temperature. We then use the GaAs-effective mass of the
electron m*=0.061m,, where m, is the free-electron mass.
We use the same parameters that we used in Ref. 9, namely,
a=13.846 A, d=47.269 A, and W=300 A (see Fig. 1).
With these parameters we create chaotic and regular
dynamical structures in the waveguide-phase space that
give rise to well-defined quasibound states. The energy
EF%:O.SO?) 407 4 eV is the threshold energy to open
the first propagating mode in the semi-infinite waveguide
lead. We use E| as the unit of energy through this report. We
only consider the incident-electron energies E which allow
one propagating mode so that £, =E=A4E,.

Since electrons freely propagate in the flat waveguide lead

FIG. 1. A biripple waveguide with a flat waveguide between the
two ripple cavities.
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FIG. 2. (a) Electron transmission through the biripple waveguide for distance W=30 A between the two monoripple cavities and for the
energy range where only one propagating mode is allowed in the external leads. Also plotted are electron transmission profiles of the
lowest-energy resonance in (a) for (b) W=0 A, (c) W=10 A, (d) W=20 A, and (e¢) W=30 A. As W changes, the width of the resonances
and the resonance energies change. The dashed line is the electron transmission for a waveguide with a single monoripple cavity.

that couples the ripple cavities, the electron-wave function
acquires the phase sy=e®", where k,=\(Q2m*/#*)(E-E,).
The S-matrix describing this phase acquisition is a 2 X2 di-
agonal matrix Sy =diag(sy,sy).'>® For a single monoripple
cavity connected to leads with only one propagating mode,
the S-matrix can be written in the form

)

where #(¢') is the transmission-probability amplitude for
electrons entering the cavity from the right (left) and r(r') is
the reflection-probability amplitude for electrons entering
from the right (left). Values for ¢, ¢’, r, r’ are obtained using
the Wigner-Eisenbud method described in Refs. 9 and 11-14.
The S-matrix for the second monoripple cavity S, can be
obtained in the same way. If the two monoripple cavities are
identical, S| and S, are same. We consider only identical
ripples in this report. The overall S-matrix S7 is obtained by
combining the S-matrices for the two monoripple cavities
and the lead that connects them, following the method de-
scribed in Refs. 15 and 16. We obtain

>, (2)

|

where U;=(1=r{syrsy) ™! and Uy=(1=r|syrosy) "

Figure 2(a) shows the transmission (conductance) of an
electron through the biripple waveguide for W=30 A for a
single propagating channel in the waveguide leads. In this
interval, there is a sequence of several resonances in the
conductance and this broad-scale structure does not change
as W is changed. In Figs. 2(b)-2(e), we show the structure of
the resonance at E=~1.328E, for W=0, 10, 20, and 30 A.
The dashed line in each figure is the electron transmission
for a waveguide with a single monoripple cavity. We can see
the resonance width narrowing and broadening (Dicke ef-
fect) as W is increased.
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Figure 3(a) shows how the S-matrix poles for the quasi-
bound states that give rise to these resonances change posi-
tion in the complex energy plane. The eight-pronged star in
the middle of this figure gives the location of the single pole
for the monoripple waveguide that gives the dashed line in
Fig. 2. In the biripple waveguide, two poles (phase shifted by
) move in a circle around the monoripple pole as W in-
creases. These two poles induce two resonance shapes in the
transmission plots (Fig. 2), a broad one and a very narrow
one. The behavior of the two poles indicates that not only the
widths but also the resonance energy (real part of the pole)
changes with W. As W increases, one of the poles gets closer
to the real axis while the other moves away from the real axis
[see Fig. 3(a)]. As one of the poles gets closer to the real
axis, its corresponding resonance becomes sharper (long-
lived state, subradiance) while the other resonance becomes
broader (short-lived state, super-radiance). The correspond-
ing narrowing and broadening of the resonance widths is
shown in Fig. 2. We have also inserted in this figure spatial
plots of the scattering state (real part only) associated with
each of these poles. For the values of W shown in Fig. 3(a),
the pole close to the real axis (long-lived quasibound state) is
antisymmetic and the pole far from the real axis (short-lived
quasibound state) is symmetric. For example, the symmetric
quasibound state for W=20 A corresponds to Dicke’s
“super-radiant” state and decays twice as fast as the corre-
sponding quasibound state associated with a single
monoripple waveguide (the eight-pronged pole). The anti-
symmetric state for W=20 A corresponds to a “subradiant”
state and lives twice as long as the quasibound state in the
monoripple waveguide. If there was one electron in each
monoripple cavity, the super-radiant state would emit an
electron-current pulse that is 2>=4 times (two electrons
twice as fast) that for a single electron in a monoripple wave-
guide.

As the poles rotate, it becomes possible for one of the
poles to reach the real axis and then the width of the reso-
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FIG. 3. (Color online) (a) S-matrix poles for the biripple waveguide with different values of W. Each pole rotates on a circle [whose
center is the S-matrix pole of the waveguide (red *) with a single cavity] in counterclockwise direction as W increases. The pair of poles has
m-phase difference so that they are located in the opposite direction on the circle. Upper (lower) inset: The spatial plots of the real part of
the scattering states for E=1.327 76E,(E=1.327 83E,) when W=25 A. (b) S-matrix pole trajectories for biripple waveguide as W varies

from 0 A to 250 A.

nance collapses, indicating that the lifetime of the resonance
has become infinite. When this happens the resonance state is
completely decoupled from external leads. This phenomenon
has been called “bound state in continuum” (BIC) in other
studies.!”!® This effect might allow controlled storage and
release of electrons in such devices.

Because the poles rotate in a circle, it is possible and
useful to write analytic expressions for the pole positions in
the complex energy plane. The S-matrix pole position for a
waveguide with a single monoripple cavity can be written
E on=E¢—ily. Since S-matrix poles for the biripple wave-
guide rotate on a circle around this pole, their positions can
be written as a sinusoidal function of W such that Eg,=E,
—il" (Eg,=E_—il"_) denotes the position of the super-radiant
(subradiant) pole, where

E+=E0+FO Sin(le+ 50), E_=EO—FO Sin(k1W+ 60),

(3)
and

I,=Iy(l+a), TI'_=Tyl-a). (4)

In Egs. (3) and (4), a=cos(k;,W+38,) is a measure of the
coupling between the cavities, k; is a wave number at a
resonance energy, and a phase factor &, is used because a
pole is not on the real axis when W=0. Figure 3(b) shows the
pole trajectories in the complex energy plane as W increases
up to 250 A. Tt confirms that the pair of poles always stays
on a circle and it verifies Eq. (3) and (4).

As was shown in Refs. 9 and 14, a sequence of reso-
nances occur as energy in the interval E;=E=4E; is in-
creased. Figures 4(a) and 4(b) show the widths of resonances
at energies E=1.3278E, and E=1.5830E), respectively, as a
function of the distance W. The resonance widths are clearly

sinusoidal functions of W, which indicates that the coupling
between the two cavities varies sinusoidally with increasing
W. Figure 4(b) oscillates slightly faster than Fig. 4(a) be-
cause of its higher-resonance energy. In Eq. (4), the coupling
parameter a=cos(k;W+&,) is a sinusoidal function which
gives the oscillatory behavior of the widths in Fig. 4. This
behavior of the coupling parameter in our one-dimensional
(1D) system is different from that seen in higher dimension.
In Ref. 4, the coupling between a collective state of two
impurities and external electron-wave function (a 2D system)
is a Bessel function [Jo(s2/Ns)] (see Eq. 19 in Ref. 4). In the

x107*

(a)

0 50 100 150 200 250
W (A)

0 50 100 150 200 250
W (A)

FIG. 4. (Color online) The resonance width I'_ for a biripple
waveguide. I'_ oscillates as W is varied. The blue line (a) is for the
resonance near E=1.3278E,. The red line (b) is for the resonance
near E=1.5830E.
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double quantum dots coupled through the common phonon
fields' [a three-dimensional (3D) system], the coupling pa-
rameter is a zeroth-order spherical Bessel function [sin (Qd)/
Qd]. In these 2D and 3D systems, the coupling parameter
decays with the distance between two atoms, as is the case
for the Dicke system (a 3D system). This dependence of the
coupling on zeroth-order Bessel functions (which have their
largest values at long wavelength) means that in 2D and 3D
systems, the super-radiance occurs predominantly with the
wavelengths much longer than the atomic distance. However,
in our 1D waveguide system (the transverse direction is con-
strained), the coupling parameter « does not decay. There-
fore, the super-radiant resonance exists regardless of the
wavelength of the electron. It is possible that a super-radiant
resonance appears with a very large distance between two
cavities but it could not exceed the coherence length of elec-
trons in the waveguide. In 2DEGs made of GaAs/AlGaAs,
for example, at a very low temperature, the coherence length
is about 10 wm.

As we have seen in Figs. 2 and 3, there are two S-matrix
poles associated with each resonance in the electron trans-
mission. The behavior of these two poles is associated with
the symmetry of the scattering wave function at resonance
energies. In Dicke’s model, subradiant resonance is related to
the antisymmetric collective state of the atomic system and
the super-radiant resonance is related to the symmetric col-
lective state. In the biripple waveguide, as the pair of poles
rotate in a counterclockwise direction (with increasing dis-
tance between the two ripple cavities), they each maintain
the symmetry of their corresponding resonance wave func-
tion. The antisymmetric state is super-radiant when a<0
and the symmetric state is super-radiant when «>0. There-
fore, super-radiant resonances appear in a sinusoidal manner
as Wincreases and the symmetry of their corresponding scat-
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tering wave functions alternates between symmetric and an-
tisymmetric with increasing W.

In conclusion, we have studied the behavior of quasi-
bound states in a biripple waveguide as the distance between
the two ripple cavities changes. We found that the widths and
positions of the resonances associated with the quasibound-
state poles change in a sinusoidal way with variation in the
distance between the ripple cavities. In 2D and 3D models of
the Dicke effect, the coupling parameter decays when the
distance between two atoms (impurities or quantum dots) is
longer than the wavelength of photon or electron. In the
ripple waveguide system, the coupling parameter does not
decay because the waveguide is a quasi-1D system. We also
studied the trajectories of S-matrix poles in the complex en-
ergy plane. We found that the pair of poles that give rise to
the super- and subradiant resonances in the electron trans-
mission, rotate on a circle centered on the S-matrix pole for
the waveguide with a single cavity and are phase-shifted by
7. Therefore, super-radiant and subradiant resonances appear
in oscillatory manner as the distance between cavities is
changed. Furthermore, as the S-matrix poles rotate, the sym-
metry of the electron state associated with the super-radiant
(subradiant) resonance alternates between symmetric and an-
tisymmetric with increasing distance between the two ripple
cavities. We believe that an experimentalist may be able to
observe the broadening and shortening of widths even if two
cavities are not identical as long as the resonance energies
are close to each other.
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